

DPP - 1 (Capacitor)

Video	So	lution	on '	Wei	bsite:-
VIUCU		IUIIUII	OII	***	usite

https://physicsaholics.com/home/courseDetails/65

Video Solution on YouTube:-

https://youtu.be/10fisTTtqoA

Written Solution on Website:-

https://physicsaholics.com/note/notesDetalis/62

- Q 1. In a parallel plate capacitor, the capacity increases if:
 - (a) area of the plate is decreased
 - (b) distance between the plates increases
 - (c) area of the plate is increased
 - (d) none of these
- Calculate capacitance of a parallel plate capacitor with area of each plate 1 cm^2 and Q 2. separation 1 mm.
 - (a) 9 pF

(b) 0.9 pF

(c) 99 pF

- (d) 90 pF
- Area of a parallel plate capacitor of capacitance 2F and separation between the plates Q 3. 0.5 cm will be
 - (a) $1.13 \times 10^9 \, m^2$

(b) $1.13 \times 10^6 m^2$

(c) $10^8 m^2$

- (d) $1.13 m^2$
- The capacitance of a parallel plate capacitor is 12 µF. If the distance between the Q 4. plates is doubled and area is halved, then new capacitance will
 - (a) 8 µF

(b) 48 µF

(c) 4 µF

- (d) 3 uF
- Q 5. How does the electric field (E) between the plates of a charged cylindrical capacitor vary with the distance r from the axis of the cylinder?
 - (a) $E \propto \frac{1}{12}$

(b) $E \propto \frac{1}{r}$ (d) $E \propto r$

(c) $E \propto r^2$

- O 6. A cylindrical capacitor is constructed using two coaxial cylinders of the same length 10cm of radii 2mm and for 4mm.
 - (a) 8 pF

(b) 4 pF

(c) 40 pF

- (d) 60 pF
- Q 7. The net charge on a capacitor is
 - (a) Infinite
- (b) Zero

(c) Finite

(d) Depends on size of capacitor

hysicsaholics

- Q 8. A capacitor of capacitance C=2.0 \pm 0.1 μ F is charged to a voltage V=20 \pm 0.2 V. What will be the charge Q on the capacitor?
 - (a) $(40 \pm 2.4) \times 10^{-6}$ C
- (b) $(10 \pm 2.1) \times 10^{-6}$ C
- (c) $(40 \pm 2.1) \times 10^{-6}$ C
- (d) $(10 \pm 2.4) \times 10^{-6}$ C
- Q 9. A capacitor of 0.75µF is charged to a voltage of 16 V. What is the magnitude of the charge on each plate of the capacitor?
 - (a) $12 \mu C$

(b) $10 \, \mu C$

(c) $18 \mu C$

- (d) $8 \mu C$
- Q 10. A spherical capacitor has an inner sphere of radius 9 cm and an outer sphere of radius 10 cm. the outer sphere is earthed and the inner sphere is charged. What is the capacitance of the capacitor?
 - (a) 100 pF

(b) 10 pF

(c) 50 pF

- (d) 90 pF
- Q 11. The capacitance of spherical conductor of radius r is proportional to:
- (b) r
- $(a) \frac{1}{r}$ $(c) \frac{1}{r^2}$
- (d) r^2
- Q 12. The capacitance of a metallic sphere is 1µF, then it's radius is nearly
 - (a) 1.11 m

(b) 10 m

(c) 9 km

- (d) 1.11 cm
- Q 13. What is value of capacitance of earth when it is considered to be spherical conductor? (Radius of earth = 6400 km)
 - (a) $711 \, \mu F$

(b) $422 \,\mu F$

(c) 688 µF

- (d) 544 µF
- What is the potential differences across a 64.0 microfarad capacitor if the charge on the Q 14. positive plate is +16.0 micro coulombs?
 - (a) 4 V

(b) 0.25 V

(c) 1024 V

(d) 2 V

Answer Key

Q.1 c	Q.2 b	Q.3 a	Q.4 d	Q.5 b
Q.6 a	Q.7 b	Q.8 a	Q.9 a	Q.10 a
Q.11 b	Q.12 c	Q.13 a	Q.14 b	